Aldolase potentiates DIDS activation of the ryanodine receptor in rabbit skeletal sarcoplasmic reticulum

Author:

Seo In-Ra1,Moh Sang Hyun1,Lee Eun Hui2,Meissner Gerhard3,Kim Do Han1

Affiliation:

1. Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea

2. Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea

3. Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, U.S.A.

Abstract

DIDS (4,4′-di-isothiocyanostilbene-2,2′-disulfonate), an anion channel blocker, triggers Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). The present study characterized the effects of DIDS on rabbit skeletal single Ca2+-release channel/RyR1 (ryanodine receptor type 1) incorporated into a planar lipid bilayer. When junctional SR vesicles were used for channel incorporation (native RyR1), DIDS increased the mean Po (open probability) of RyR1 without affecting unitary conductance when Cs+ was used as the charge carrier. Lifetime analysis of single RyR1 activities showed that 10 μM DIDS induced reversible long-lived open events (Po=0.451±0.038) in the presence of 10 μM Ca2+, due mainly to a new third component for both open and closed time constants. However, when purified RyR1 was examined in the same condition, 10 μM DIDS became considerably less potent (Po=0.206±0.025), although the caffeine response was similar between native and purified RyR1. Hence we postulated that a DIDS-binding protein, essential for the DIDS sensitivity of RyR1, was lost during RyR1 purification. DIDS-affinity column chromatography of solubilized junctional SR, and MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS analysis of the affinity-column-associated proteins, identified four major DIDS-binding proteins in the SR fraction. Among them, aldolase was the only protein that greatly potentiated DIDS sensitivity. The association between RyR1 and aldolase was further confirmed by co-immunoprecipitation and aldolase-affinity batch-column chromatography. Taken together, we conclude that aldolase is physically associated with RyR1 and could confer a considerable potentiation of the DIDS effect on RyR1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3