Initial-rate studies of a thermophilic glucokinase from Bacillus stearothermophilus

Author:

Ishikawa H1,Maeda T1,Hikita H1

Affiliation:

1. Department of Chemical Engineering, University of Osaka Prefecture, Japan.

Abstract

The initial rates of phosphorylation of glucose catalysed by glucokinase from Bacillus stearothermophilus were measured over a wide range of glucose, MgATP2-, MgADP- and glucose 6-phosphate concentrations. The results of the effects of the inhibitors on the initial rates suggest that the reaction mechanism is essentially the ordered Bi Bi, in which glucose adds to the enzyme before MgATP2- and glucose 6-phosphate is released from the enzyme after the dissociation of MgADP-, and also suggest that the final step in which glucose 6-phosphate is released is irreversible. For many reaction schemes, the rate equations were derived on the basis of the pseudo-steady-state assumption and were used to correlate the experimental rate data. From this result, we concluded that the reaction obeys the ordered mechanism accompanied by the formation of a non-productive ternary complex, glucose-MgADP--enzyme. By using the experimental Dalziel coefficients phi i, some kinetic parameters were evaluated. The enzyme was characterized by the thermal stability and the low Michaelis constant, the values of which were 54 microM for glucose and 32 microM for MgATP2-.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extremophile-assisted nanomaterial production and nanomaterial-based biosensing;Functional Nanostructured Interfaces for Environmental and Biomedical Applications;2019

2. Biochemistry and regulatory functions of bacterial glucose kinases;Archives of Biochemistry and Biophysics;2015-07

3. Thermostable Proteins as Probe for the Design of Advanced Fluorescence Biosensors;Reviews in Environmental Science and Bio/Technology;2006-07-15

4. Study of enzymatic G6P synthesis using polymer-bound ATP in membrane reactors;AIChE Journal;2006

5. Thermostable proteins as probe for the design of advanced fluorescence biosensors;Life in Extreme Environments;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3