Bicarbonate-dependent ATP cleavage catalysed by pyruvate carboxylase in the absence of pyruvate

Author:

Attwood P V1,Graneri B D L A1

Affiliation:

1. Department of Biochemistry, University of Western Australia, Nedlands, W.A. 6009, Australia

Abstract

Preparations of pyruvate carboxylase catalyse the cleavage of MgATP in the absence of pyruvate and acetyl-CoA. The rate of this cleavage is higher in the presence of HCO3- than in its absence. Incubation of the enzyme preparations with an excess of the pyruvate carboxylase inhibitor, avidin, completely abolishes the pyruvate carboxylating activity of the enzyme preparations but only abolishes the HCO3(-)-dependent MgATP cleaving activity, with no effect on the HCO3(-)-independent ATPase activity. The HCO3(-)-dependent MgATP cleavage is also sensitive to inhibition by a pyruvate carboxylase inhibitor, oxamate, and the dependence of the reaction on the free Mg2+ concentration is similar to that of the pyruvate-carboxylation reaction, whereas the HCO3(-)-independent MgATP cleavage is not dependent on the concentration of free Mg2+ in the range tested. This indicates that MgATP cleavage by pyruvate carboxylase is entirely dependent on the presence of HCO3- and that there may be a low level of ATPase contamination in the enzyme preparations. In addition, inhibition of the HCO3(-)-dependent MgATP cleavage by both avidin and oxamate indicate that although biotin does not directly participate in the reaction, its presence is required in that part of the active site of the enzyme. The rate of HCO3(-)-dependent MgATP cleavage is about 0.07% of that of the full pyruvate carboxylation reaction under similar conditions with saturating substrates. The reaction mechanism is sequential with respect to MgATP and HCO3- addition and Mg2+ adds at equilibrium before MgATP. Acetyl-CoA stimulates the HCO3(-)-dependent MgATP cleavage at low MgATP concentrations, with the stimulation being greater at low Mg2+ concentrations. At high levels of MgATP in the presence of acetyl-CoA, substrate inhibition is evident and is more pronounced at increasing concentrations of Mg2+. This inhibition appears to be, at least in part, caused by inhibition of decarboxylation of the enzyme-carboxybiotin complex by the binding to this complex of Mg2+ and MgATP, which probably act to reduce the rate of movement of carboxybiotin from the site of the MgATP cleavage reaction to that of the pyruvate carboxylation reaction where it is unstable and decarboxylates.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3