Location and functional characterization of myosin contact sites in smooth- muscle caldesmon

Author:

VOROTNIKOV V. Alexander1,MARSTON B. Steven2,HUBER A. J. Pia2

Affiliation:

1. Laboratory of Cell Motility, Institute of Experimental Cardiology, Russian Cardiology Research Centre, Moscow 121552, Russia

2. Cardiac Medicine, Imperial College School of Medicine at the National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, U.K.

Abstract

Caldesmon interaction with smooth muscle myosin and its ability to cross-link actin filaments to myosin were investigated by the use of several bacterially expressed myosin-binding fragments of caldesmon. We have confirmed the presence of two functionally different myosin-binding sites located in domains 1 and 3/4a of caldesmon. The binding of the C-terminal site is highly sensitive to ionic strength and hardly participates in acto-myosin cross-linking, while the N-terminal binding site is relatively independent of ionic strength and apparently contains two separate myosin contact regions within residues 1-28 and 29-128 of chicken gizzard caldesmon. Both these N-terminal sub-sites are involved in the interaction with myosin and are predominantly responsible for the caldesmon-mediated high-affinity cross-linking of actin and myosin filaments, without affecting the affinity of direct acto-myosin interaction. Binding of caldesmon and its fragments to myosin or rod filaments revealed affinity in the micromolar range. We determined various stoichiometries at maximal binding, which depended on the ionic strength and the concentration of Mg2+ ions. At 30 mM NaCl and 1 mM Mg2+ the maximum stoichiometry was 4 moles of caldesmon (or caldesmon fragment) per mole of myosin. At 130 mM NaCl/1 mM Mg2+, or at 30 mM NaCl/5 mM Mg2+ it decreased to about two caldesmon molecules bound per myosin, while remaining 4:1 for individual caldesmon fragments, suggesting that all binding sequences on myosin were still fully capable of interaction. A further increase in the Mg2+ concentration led to a substantial decrease in both the affinity and maximum stoichiometry of caldesmon and the fragments binding to myosin. We suggest that caldesmon-myosin interaction varies according to the conformation of caldesmon in solution, that caldesmon-binding sites on myosin are not well defined and that their accessibility is determined by spatial organization and is blocked by divalent cations like Mg2+.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3