Binding of ligands and spectral shifts in cytochrome c oxidase

Author:

Nicholls Peter1,Hildebrandt Virginia1

Affiliation:

1. Department of Biological Sciences, Brock University, St. Catharines, Ont. L2S 3A1, Canada

Abstract

1. On addition of reductant (ascorbate plus NNN′N′-tetramethyl-p-phenylenediamine) to isolated cytochrome c oxidase (ox heart cytochrome aa3), in the presence of the inhibitors azide or cyanide, an initial partially reduced species is formed with absorption peaks at 415nm, 445nm and 605nm, which slowly gives rise to the final ‘half-reduced’ species in whose spectrum the 415nm peak has disappeared and a new absorption is seen at 430–435nm. 2. In the absence of reductant, cyanide forms an initial complex with the enzyme with a spectrum similar to that of the uncombined form, which slowly changes into the ‘low-spin’ cyanide form with a peak at 432nm. Azide, in absence of reductant, shifts the Soret peak slightly, but the resulting complex, which is probably thermally ‘mixed-spin’, undergoes no further changes. 3. The Soret-peak shift of oxidized cytochrome a3 which occurs on reduction of the enzyme in the presence of azide is accompanied by a concurrent blue shift of the ferrous cytochrome a peak from 605nm to 603nm. A partial blue shift of the α-peak occurs in the half-reduced sulphide-inhibited enzyme, and a complete blue shift is seen in the analogous complexes with alkyl sulphides [a2+a33+HSR compounds, where R=CH3, C2H5 or (CH3)2CH]. 4. Analogous, albeit less readily decipherable, spectroscopic effects with the ligands imidazole and alkyl isocyanides suggest that on reduction of cytochrome a an interaction occurs between the two haem groups involving (i) a high- to low-spin change in cytochrome a3, and after this, (ii) a change in the molecular environment of the cytochrome a. The latter effect, possibly a decrease in the hydrophobicity of the haem pocket, requires that the ligands on cytochrome a3 have a bulky and partially hydrophobic character.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3