Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Purification and preliminary characterization

Author:

MacKintosh R W1,Fewson C A1

Affiliation:

1. Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, U.K.

Abstract

A quick, reliable, purification procedure was developed for purifying both benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from a single batch of Acinetobacter calcoaceticus N.C.I.B. 8250. The procedure involved disruption of the bacteria in the French pressure cell and preparation of a high-speed supernatant, followed by chromatography on DEAE-Sephacel, affinity chromatography on Blue Sepharose CL-6B and Matrex Gel Red A, and finally gel filtration through a Superose 12 fast-protein-liquid-chromatography column. The enzymes co-purified as far as the Blue Sepharose CL-6B step were separated on the Matrex Gel Red A column. The final preparations of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II gave single bands on electrophoresis under non-denaturing conditions or on SDS/polyacrylamide-gel electrophoresis. The enzymes are tetramers, as judged by comparison of their subunit (benzyl alcohol dehydrogenase, 39,700; benzaldehyde dehydrogenase II, 55,000) and native (benzyl alcohol dehydrogenase, 155,000; benzaldehyde dehydrogenase II, 222,500) Mr values, estimated by SDS/polyacrylamide-gel electrophoresis and gel filtration respectively. The optimum pH values for the oxidation reactions were 9.2 for benzyl alcohol dehydrogenase and 9.5 for benzaldehyde dehydrogenase II. The pH optimum for the reduction reaction for benzyl alcohol dehydrogenase was 8.9. The equilibrium constant for oxidation of benzyl alcohol to benzaldehyde by benzyl alcohol dehydrogenase was determined to be 3.08 x 10(-11) M; the ready reversibility of the reaction catalysed by benzyl alcohol dehydrogenase necessitated the development of an assay procedure in which hydrazine was used to trap the benzaldehyde formed by the NAD+-dependent oxidation of benzyl alcohol. The oxidation reaction catalysed by benzaldehyde dehydrogenase II was essentially irreversible. The maximum velocities for the oxidation reactions catalysed by benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II were 231 and 76 mumol/min per mg of protein respectively; the maximum velocity of the reduction reaction of benzyl alcohol dehydrogenase was 366 mumol/min per mg of protein. The pI values were 5.0 for benzyl alcohol dehydrogenase and 4.6 for benzaldehyde dehydrogenase II. Neither enzyme activity was affected when assayed in the presence of a range of salts. Absorption spectra of the two enzymes showed no evidence that they contain any cofactors such as cytochrome, flavin, or pyrroloquinoline quinone. The kinetic coefficients of the purified enzymes with benzyl alcohol, benzaldehyde, NAD+ and NADH are also presented.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3