The dynamic Rab11-FIPs

Author:

Horgan Conor P.1,McCaffrey Mary W.1

Affiliation:

1. Molecular Cell Biology Laboratory, Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland

Abstract

The Rab11-FIPs (Rab11-family interacting proteins; also known as FIPs) constitute an evolutionarily conserved protein family that act as effector molecules for multiple Rab and Arf (ADP-ribosylation factor) GTPases. They were initially characterized by their ability to bind Rab11 subfamily members via a highly-conserved C-terminal RBD (Rab11-binding domain). Resolution of the crystal structure of Rab11 in complex with FIPs revealed that the RBD mediates homodimerization of the FIP molecules, creating two symmetrical interfaces for Rab11 binding and leading to the formation of a heterotetrameric complex between two FIP and two Rab11 molecules. The FIP proteins are encoded by five genes and alternative splicing has been reported. Based on primary structure, the FIPs were subcategorized into two classes: class I [Rip11, FIP2 and RCP (Rab-coupling protein)] and class II (FIP3 and FIP4). Recent studies have identified the FIPs as key players in the regulation of multiple distinct membrane trafficking events. In this mini-review, we summarize the Rab11-FIP field and discuss, at molecular and cellular levels, the recent findings on FIP function.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference50 articles.

1. Endocytic recycling;Maxfield;Nat. Rev. Mol. Cell Biol.,2004

2. Rab proteins as membrane organizers;Zerial;Nat. Rev. Mol. Cell Biol.,2001

3. The Rab GTPase family;Stenmark;Genome Biol.,2001

4. Rab11b is essential for recycling of transferrin to the plasma membrane;Schlierf;Exp. Cell Res.,2000

5. Rab11 regulates recycling through the pericentriolar recycling endosome;Ullrich;J. Cell Biol.,1996

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3