Interaction of cell-membrane prolactin receptor with its antibody

Author:

Shiu R P C,Friesen H G

Abstract

Antisera against a partially purified prolactin-receptor preparation derived from pregnant-rabbit mammary glands were generated in guinea pigs. On double immuno-diffusion, each antiserum produced a single precipitin line with the prolactin receptors. The anti-receptor sera also specifically inhibited the binding of 125I-labelled sheep prolactin to membrane particles as well as to highly purified prolactin receptors derived from the rabbit mammary glands. The same antisera, however, had no effect on the binding of 125I-labelled insulin to the same membranes. These antisera did not bind or destroy prolactin. Moreover, the binding of 125I-LABELLED PROLACTIN TO MEMBRANE PARTICLES DErived from different tissues from a number of species was also inhibited by the antisera, thus suggesting that the immunological determinants of the prolactin receptors are similar in various tissues derived from different species. The factors in the antisera that were responsible for inhibiting the binding of 125I-labelled prolactin to its receptors were found to be associated with the gamma-globulin fraction. In addition, 131I-labelled gamma-globulins derived from one antiserum were shown to bind to membrane particles derived from mammary glands, and an increase in binding of gamma-globulin was accompanied by a decrease in binding of prolactin. Kinetic analyses of inhibition of 125I-labelled prolactin binding by antisera by using the methods of Lineweaver & Burk [J. Am. Chem. Soc. (1934) 56, 658-666] and Dixon [Biochem. J. (1953) 55, 170-171], revealed that the mechanism is a hyperbolic competitive inhibition. The demonstration of hormone-receptor-antibody complexes further favours this mechanism. The availability of anti-receptor sera should facilitate studies on the functional role as well as other biochemical, immunological and physiological properties of the prolactin receptors.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3