Radical adducts of nitrosobenzene and 2-methyl-2-nitrosopropane with 12,13-epoxylinoleic acid radical, 12,13-epoxylinolenic acid radical and 14,15-epoxyarachidonic acid radical. Identification by h.p.l.c.-e.p.r. and liquid chromatography-thermospray-m.s

Author:

Iwahashi H1,Parker C E1,Mason R P1,Tomer K B1

Affiliation:

1. Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, U.S.A.

Abstract

Linoleic acid-derived radicals, which are formed in the reaction of linoleic acid with soybean lipoxygenase, were trapped with nitrosobenzene and the resulting radical adducts were analysed by h.p.l.c.-e.p.r. and liquid chromatography-thermospray-m.s. Three nitrosobenzene radical adducts (peaks I, II and III) were detected; these gave the following parent ion masses: 402 for peak I, 402 for peak II, and 386 for peak III. The masses of peaks I and II correspond to the linoleic acid radicals with one more oxygen atom [L(O).]. The radicals are probably carbon-centred, because the use of 17O2 did not result in an additional hyperfine splitting. Computer simulation of the peak I radical adduct e.p.r. spectrum also suggested that the radical is carbon-centred. The peak I radical was also detected in the reaction of 13-hydroperoxylinoleic acid with FeSO4. From the above results, peak I is probably the 12,13-epoxylinoleic acid radical. An h.p.l.c.-e.p.r. experiment using [9,10,12,13-2H4]linoleic acid suggested that the 12,13-epoxylinoleic acid radical is a C-9-centred radical. Peak II is possibly an isomer of peak I. Peak III, which was observed in the reaction mixture without soybean lipoxygenase, corresponds to a linoleic acid radical (L.). The 12,13-epoxylinoleic acid radical, 12,13-epoxylinolenic acid radical and 14,15-epoxyarachidonic acid radical were also detected in the reactions of linoleic acid, linolenic acid and arachidonic acid respectively, with soybean lipoxygenase using nitrosobenzene and 2-methyl-2-nitrosopropane as spin-trapping agents.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3