Affiliation:
1. School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.k.
Abstract
(1) CoA (IC50 23 microM) and acyl-CoAs (IC50 values 15-18 microM) inhibit GTP-dependent vesicle fusion in rat liver microsomal vesicles. Acyl-CoAs of carbon chain length C8 and C20 are much less effective than acyl-CoAs of carbon chain length C14-C18. The effect of CoA is mimicked by dephospho-CoA, but not by desulpho-CoA. High acyl-CoA concentrations (50 microM) appear to favour formation of small vesicles (budding), while 50 microM CoA does not. (2) Low concentrations of CoA (EC50 2 microM) and palmitoyl-CoA (10 microM) cause re-accumulation of Ca2+ released in response to GTP. This re-accumulation is into an Ins(1,4,5)P3-sensitive compartment. By investigation of the effects of CoA and palmitoyl-CoA on the thapsigargin-induced passive leak rate of Ca2+, and on the latency of the mannose-6-phosphatase of the vesicles, we conclude that CoA and palmitoyl-CoA cause decreased vesicle permeability rather than stimulation of Ca2+ pumping activity. (3) It is suggested that GTP-induced membrane fusion in rat liver microsomes involves an as yet uncharacterized acylation-deacylation reaction which is required to produce complete vesicle sealing.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献