A new method to monitor Kupffer-cell function continuously in the perfused rat liver. Dissociation of glycogenolysis from particle phagocytosis

Author:

Cowper K B1,Currin R T2,Dawson T L2,Lindert K A1,Lemasters J J2,Thurman R G1

Affiliation:

1. Laboratory of Hepatobiology and Toxicology, Department of Pharmacology, Chapel Hill, NC 27599-7365, U.S.A.

2. Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, U.S.A.

Abstract

In order to study particle phagocytosis and glycogenolysis simultaneously, this study was designed to develop a direct-read-out method to monitor Kupffer-cell function continuously, based on the uptake of colloidal carbon by the isolated perfused rat liver. Livers were perfused for 20 min with Krebs-Henseleit buffer saturated with O2/CO2 (19:1). Colloidal carbon (1-2 mg/ml) was added to the buffer, and absorbance of carbon was monitored continuously at 623 nm in the effluent perfusate. Since colloidal-carbon uptake was proportional to A623, rates of uptake were determined from the influent minus effluent concentration difference, the flow rate and the liver wet weight. Rates of colloidal-carbon uptake were 50-200 mg/h per g and were proportional to the concentration of carbon infused. Data from light-microscopy and cell-separation studies demonstrated that carbon was taken up exclusively by non-parenchymal cells and predominantly by Kupffer cells. Further, the amount of colloidal carbon detected histologically in non-parenchymal cells increased as the concentration of colloidal carbon in the perfusate was elevated. When Kupffer cells were activated or inhibited by treatment with endotoxin or methyl palmitate, carbon uptake was increased or decreased respectively. Taken together, these results indicate that Kupffer-cell function can be monitored continuously in a living organ. This new method was utilized to compare the time course of phagocytosis of carbon by Kupffer cells and carbohydrate output by parenchymal cells. Carbohydrate output increased rapidly by 69 +/- 9 mumol per g within 2-4 min after addition of carbon and returned to basal values within 12-16 min. However, carbon uptake by the liver did not reach maximal rates until about 15 min. Infusion of a cyclo-oxygenase inhibitor, aspirin (10 mM), caused a progressive decrease in carbohydrate output and blocked the stimulation by carbon completely. Aspirin neither altered rates of carbon uptake nor prevented stimulation of carbohydrate release by addition of N2-saturated buffer. The data from these experiments are consistent with the hypothesis that output of mediators by Kupffer cells, presumably prostaglandin D2 and E2, occurs transiently as Kupffer cells begin to phagocytose foreign particles in the intact organ, a process which continues at high rates for hours.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3