Scanning FCS, a novel method for three-dimensional particle tracking

Author:

Levi V.1,Ruan Q.1,Kis-Petikova K.1,Gratton E.1

Affiliation:

1. Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-63080, U.S.A.

Abstract

We describe a novel method to track fluorescent particles in three dimensions with nanometre precision and millisecond time resolution. In this method, we use our two-photon excitation microscope. The galvomotor-driven x–y scanning mirrors allow the laser beam to move repetitively in a circular path with a radius of half the width of the point spread function of the laser. When the fluorescent particle is located within the scanning radius of the laser, the precise position of the particle in the x–x plane can be determined by its fluorescence intensity distribution along the circular scanning path. A z-nanopositioner on the objective was used to change the laser focus at two planes (half width of the point spread function apart). The difference of the fluorescence intensity in the two planes is used to calculate the z-position of the fluorescent particle. The laser beam is allowed to scan multiple circular orbits before it is moved to the other plane, thus improving the signal to noise ratio. With a fast feedback mechanism, the position of the laser beam is directed to the centre of the fluorescent particle, thus allowing us to track a particle in three dimensions. In this contribution we describe some calibration experiments performed to test the three-dimensional tracking capability of our system over a large range.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3