A cyclic peptide reproducing the α1 helix of VEGF-B binds to VEGFR-1 and VEGFR-2 and inhibits angiogenesis and tumor growth

Author:

Assareh Elham1,Mehrnejad Faramarz2,Mansouri Kamran3,Esmaeili Rastaghi Ahmad Reza4,Naderi-Manesh Hossein5,Asghari S. Mohsen1ORCID

Affiliation:

1. Department of Biology, Faculty of Sciences, University of Guilan, 41335-19141 Rasht, Iran

2. Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14395-1561 Tehran, Iran

3. Medical Biology Research Center, Kermanshah University of Medical Sciences, 67155-1616 Kermanshah, Iran

4. Department of Parasitology, Pasteur Institute of Iran, 1316943551 Tehran, Iran

5. Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, 14115-175 Tehran, Iran

Abstract

Abstract Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are pivotal regulators of angiogenesis. The VEGF–VEGFR system is therefore an important target of anti-angiogenesis therapy. Based on the X-ray structure of VEGF-B/VEGFR-1 D2, we designed a cyclic peptide (known as VGB1) reproducing the α1 helix and its adjacent region to interfere with signaling through VEGFR-1. Unexpectedly, VGB1 bound VEGFR-2 in addition to VEGFR-1, leading to inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells and 4T1 murine mammary carcinoma cells, which express VGEFR-1 and VEGFR-2, and U87 glioblastoma cells that mostly express VEGFR-2. VGB1 inhibited different aspects of angiogenesis, including proliferation, migration and tube formation of endothelial cells stimulated by VEGF-A through suppression of extracellular signal-regulated kinase 1/2 and AKT (Protein Kinase B) phosphorylation. In a murine 4T1 mammary carcinoma model, VGB1 caused regression of tumors without causing weight loss in association with impaired cell proliferation (decreased Ki67 expression) and angiogenesis (decreased CD31 and CD34 expression), and apoptosis induction (increased TUNEL staining and p53 expression, and decreased Bcl-2 expression). According to far-UV circular dichroism (CD) and molecular dynamic simulation data, VGB1 can adopt a helical structure. These results, for the first time, demonstrate that α1 helix region of VEGF-B recognizes both VEGFR-1 and VEGFR-2.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference64 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3