Silencing of type II phosphatidylinositol 4-kinase β stabilizes prostate apoptosis response-4 and induces apoptosis in cancer cells

Author:

Chaudhry Sonica1,Joshi Vibhor1,Bojjireddy Naveen1,Thoh Maikho2,Sandur Santosh K.2,Subrahmanyam Gosukonda1ORCID

Affiliation:

1. Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India

2. Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India

Abstract

Abstract Type II phosphatidylinositol 4-kinase β (PtdIns 4-kinase II β) is an enigma among the phosphatidylinositol 4-kinase family. The role of PtdIns 4-kinase II β in MCF-7 cells was addressed with the help of short hairpin RNA (shRNA). PtdIns 4-kinase II β shRNA transfection increased pan-caspase activity and induced apoptosis in cancerous MCF-7 cells. Non-cancerous MCF-10A cells were resistant to PtdIns 4-kinase II β shRNA-induced apoptosis. Caspase 8 and 9 inhibitors rescued MCF-7 cells from apoptosis. Shotgun proteomic studies with Flag-tagged PtdIns 4-kinase II β immunoprecipitates showed tumor suppressor prostate apoptosis response-4 (Par-4) as one of the interacting proteins in HEK293 cells. In reciprocal experiments, Par-4 antibodies co-precipitated PtdIns 4-kinase II β from MCF-7 cells. Deletion of membrane localization motif (ΔCCPCC) or a mutation in ATP-binding region (D304A) of PtdIns 4-kinase II β did not affect its interaction with Par-4. Pull-down assays with GST-PtdIns 4-kinase II β-truncated mutants showed that the region between 101 and 215 amino acid residues is essential for interaction with Par-4. At molecular level, PtdIns 4-kinase II β shRNA transfection increased Par-4 stability, its nuclear localization and inhibition of NF-κB binding to target DNA. Knocking down of Par-4 with siRNA (small interfering RNA) rescued MCF-7 cells from PtdIns 4-kinase II β shRNA-induced apoptosis. These results suggest that PtdIns 4-kinase II β may be a novel regulator of Par-4 through protein–protein interactions. These studies have potential implications in cancer therapy.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3