Affiliation:
1. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, 47003 Valladolid, Spain
Abstract
Cytosolic Ca2+ signals are often amplified by massive calcium release from the endoplasmic reticulum (ER). This calcium-induced calcium release (CICR) occurs by activation of an ER Ca2+ channel, the ryanodine receptor (RyR), which is facilitated by both cytosolic- and ER Ca2+ levels. Caffeine sensitizes RyR to Ca2+ and promotes ER Ca2+ release at basal cytosolic Ca2+ levels. This outcome is frequently used as a readout for the presence of CICR. By monitoring ER luminal Ca2+ with the low-affinity genetic Ca2+ probe erGAP3, we find here that application of 50 mM caffeine rapidly reduces the Ca2+ content of the ER in HeLa cells by ∼50%. Interestingly, this apparent ER Ca2+ release does not go along with the expected cytosolic Ca2+ increase. These results can be explained by Ca2+ chelation by caffeine inside the ER. Ca2+-overloaded mitochondria also display a drop of the matrix Ca2+ concentration upon caffeine addition. In contrast, in the cytosol, with a low free Ca2+ concentration (10−7 M), no chelation is observed. Expression of RyR3 sensitizes the responses to caffeine with effects both in the ER (increase in Ca2+ release) and in the cytosol (increase in Ca2+ peak) at low caffeine concentrations (0.3–1 mM) that have no effects in control cells. Our results illustrate the fact that simultaneous monitoring of both cytosolic- and ER Ca2+ are necessary to understand the action of caffeine and raise concerns against the use of high concentrations of caffeine as a readout of the presence of CICR.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献