Two active site arginines are critical determinants of substrate binding and catalysis in MenD: a thiamine-dependent enzyme in menaquinone biosynthesis

Author:

Qin Mingming1,Song Haigang1,Dai Xin1,Chen Yaozong1,Guo Zhihong1ORCID

Affiliation:

1. Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China

Abstract

The bacterial enzyme MenD, or 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC) synthase, catalyzes an essential Stetter reaction in menaquinone (vitamin K2) biosynthesis via thiamine diphosphate (ThDP)-bound tetrahedral post-decarboxylation intermediates. The detailed mechanism of this intermediate chemistry, however, is still poorly understood, but of significant interest given that menaquinone is an essential electron transporter in many pathogenic bacteria. Here, we used site-directed mutagenesis, enzyme kinetic assays, and protein crystallography to reveal an active–inactive intermediate equilibrium in MenD catalysis and its modulation by two conserved active site arginine residues. We observed that these conserved residues play a key role in shifting the equilibrium to the active intermediate by orienting the C2-succinyl group of the intermediates through strong ionic hydrogen bonding. We found that when this interaction is moderately weakened by amino acid substitutions, the resulting proteins are catalytically competent with the C2-succinyl group taking either the active or the inactive orientation in the post-decarboxylation intermediate. When this hydrogen-bonding interaction was strongly weakened, the succinyl group was re-oriented by 180° relative to the native intermediate, resulting in the reversal of the stereochemistry at the reaction center that disabled catalysis. Interestingly, this inactive intermediate was formed with a distinct kinetic behavior, likely as a result of a non-native mode of enzyme–substrate interaction. The mechanistic insights gained from these findings improve our understanding of the new ThDP-dependent catalysis. More importantly, the non-native-binding site of the inactive MenD intermediate uncovered here provides a new target for the development of antibiotics.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3