Variants with increased negative electrostatic potential in the Cx50 gap junction pore increased unitary channel conductance and magnesium modulation

Author:

Tejada Mary Grace1,Sudhakar Swathy1,Kim Nicholas K.1,Aoyama Hiroshi2,Shilton Brian H.3,Bai Donglin1ORCID

Affiliation:

1. Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada

2. Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan

3. Department of Biochemistry, University of Western Ontario, London, Ontario, Canada

Abstract

Gap junction (GJ) channels are oligomers of connexins forming channels linking neighboring cells. GJs formed by different connexins show distinct unitary channel conductance (γj), transjunctional voltage-dependent gating (Vj-gating) properties, and modulation by intracellular magnesium ([Mg2+]i). The underlying molecular determinants are not fully clear. Previous experimental evidence indicates that residues in the amino terminal (NT) and initial segment of the first extracellular (E1) domain influence the γj, Vj-gating, and/or [Mg2+]i modulation in several GJs. Increasing negatively charged residues in Cx50 (connexin50) E1 (G46D or G46E) increased γj, while increasing positively charged residue (G46K) reduced the γj. Sequence alignment of Cx50 and Cx37 in the NT and E1 domains revealed that in Cx50 G8 and V53, positions are negatively charged residues in Cx37 (E8 and E53, respectively). To evaluate these residues together, we generated a triple variant in Cx50, G8E, G46E, and V53E simultaneously to study its γj, Vj-gating properties, and modulation by [Mg2+]i. Our data indicate that the triple variant and individual variants G8E, G46E, and V53E significantly increased Cx50 GJ γj without a significant change in the Vj gating. In addition, elevated [Mg2+]i reduced γj in Cx50 and all the variant GJs. These results and our homology structural models suggest that these NT/E1 residues are likely to be pore-lining and the variants increased the negative electrostatic potentials along the GJ pore to facilitate the γj of this cation-preferring GJ channel. Our results indicate that electrostatic properties of the Cx50 GJ pore are important for the γj and the [Mg2+]i modulation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3