Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate

Author:

Müller Werner E.G.1,Ackermann Maximilian2,Tolba Emad13,Neufurth Meik1,Ivetac Ivan14,Kokkinopoulou Maria5,Schröder Heinz C.1,Wang Xiaohong1ORCID

Affiliation:

1. ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany

2. Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, 55099 Mainz, Germany

3. Polymers and Pigments Department, National Research Center, 33 El Buhouth St, Dokki, 12311 Cairo, Egypt

4. Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia

5. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Abstract

The in vitro tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found to increase endothelial cell tube formation, as well as the intracellular ATP levels. Depletion of extracellular ATP with apyrase suppressed tube formation during the initial incubation period. Inhibition experiments revealed that inhibitors (levamisole and Ap5A) of the enzymes involved in extracellular ATP generation strongly reduce the Ca-polyP-MP-induced tube formation. The stimulatory effect of Ca-polyP-MP was also diminished by the glycolysis inhibitor oxamate and trifluoperazine which blocks endocytosis, as well as by MRS2211, an antagonist of the P2Y13 receptor. Oligomycin, an inhibitor of the mitochondrial F0F1-ATP synthase, displayed no effect at lower concentrations on tube formation. Electron microscopic data revealed that after cellular uptake, the Ca-polyP-MP accumulate close to the cell membrane. We conclude that in HUVEC exposed to polyP, ATP is formed extracellularly via the coupled ALP-AK reaction, and intracellularly during glycolysis. The results suggest an autocrine signaling pathway of ATP with polyP as an extracellular store of metabolic energy for endothelial cell migration during the initial vascularization process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3