NLRP3 regulates macrophage M2 polarization through up-regulation of IL-4 in asthma

Author:

Liu Ying1,Gao Xin1,Miao Yi1,Wang Yuanyuan1,Wang Huan1,Cheng Zhe1,Wang Xi1,Jing Xiaogang1,Jia Liuqun1,Dai Lingling1,Liu Meng1,An Lin1

Affiliation:

1. Department of Respiration, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

Abstract

Activation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome received substantial attention recently in inflammatory diseases. Macrophages contribute to allergic inflammation in asthma. The present study was aimed to investigate the effect of NLRP3 inflammasome on the polarization of macrophages. We utilized human primary monocytes and monocyte-derived macrophages to study the expression of NLRP3 inflammasome components (NLRP3, apoptosis-associated specklike protein, and caspase-1) and its downstream cytokine interleukin-1β (IL-1β). By gain- or loss-of-function assays, we next explored the effects of NLRP3 inflammasome on M1/M2 polarization and secretion of IL-4, interferon-γ, tumor necrosis factor-α, and IL-1β. The results showed increased numbers of M2 cells in asthma. And NLRP3 inflammasome was activated and involved in the inflammation of asthma. Furthermore, silence of NLRP3 down-regulated IL-4 secretion and up-regulated M1/M2. In contrast, overexpression of NLRP3 increased IL-4 and decreased M1/M2. As expected, IL-4 was involved in NLRP3-mediated down-regulation of Ml/M2 ratio. Moreover, NLRP3 interacted with IRF4 and was required for optimal IRF4-dependent IL-4 transcription. Subsequently, deficiency of NLRP3 in ovalbumin-induced allergic asthmatic mice impaired lung inflammation and up-regulated M1/M2, and diminished IL-4 in bronchoalveolar lavage fluid. Collectively, we demonstrated here that activation of NLRP3 was engaged in the promotion of asthma. NLRP3, but not the inflammasome adaptor ASC or caspase-1, promoted the polarization of M2 macrophages through up-regulating the expression of IL-4, thereby contributing to its regulation of asthma.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3