Solvent isotope effect on bile formation in the rat

Author:

Elsing C1,Hirlinger A1,Renner E L1,Lauterburg B H1,Meier P J2,Reichen J1

Affiliation:

1. Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, CH 3010 Berne, Switzerland

2. Depadment of Clinical Pharmacology, Ramistrasse 100, 8091 Zurich, University of Zurich, Switzerland

Abstract

2H2O affects many membrane transport processes by solvent and kinetic isotope effects. Since bile formation is a process of osmotic filtration where such effects could be important, we investigated the effects of 2H2O on bile formation in the in situ perfused rat liver. Dose finding experiments showed that at high concentrations, 2H2O increased vascular resistance and induced cholestasis; at 60% 2H2O however, a clear dissociation between the vascular and biliary effects was observed. Therefore, further experiments were carried out at this concentration. The main finding was a reduction in bile salt-independent bile flow from 0.99 +/- 0.04 to 0.66 +/- 0.04 microliters.min-1.g-1 (P < 0.001). This was associated with a 40% reduction in biliary bicarbonate concentration (P < 0.001). Choleretic response to neither taurocholate nor ursodeoxycholate was altered by 2H2O; in particular, there was a similar stimulation of bicarbonate secretion by ursodeoxycholate in the presence of 60% 2H2O. To further elucidate this phenomenon, the effect of 2H2O on three proteins potentially involved in biliary bicarbonate secretion was studied in vitro. 2H2O slightly inhibited cytosolic carboanhydrase and leukocyte Na+/H(+)-exchange, these effects reached statistical significance at 100% 2H2O only, however. In contrast, Cl-/HCO(3-)-exchange in canalicular membrane vesicles was already inhibited by 50% (P < 0.001) at 60% 2H2O. Finally, there was a slight reduction in biliary glutathione secretion while that of the disulphide was not affected. Our results are compatible with an inhibition of canalicular Cl-/HCO(3-)-exchange by 2H2O. Whether this is due to altered hydration of the exchanger and/or of the transported bicarbonate remains to be determined.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3