A direct pathway for the conversion of propionate into pyruvate in Moraxella lwoffi

Author:

Hodgson B.1,McGarry J. D.1

Affiliation:

1. Department of Biochemistry, University of Manchester Institute of Science and Technology

Abstract

1. The identity of the organism previously known as Vibrio O1 (N.C.I.B. 8250) with a species of Moraxella is established. 2. The ability of cells to oxidize propionate is present only in cells with an endogenous respiration and this ability is increased 80-fold when the organism is grown with propionate. 3. Isocitrate lyase activity in extracts from propionate-grown cells is the same as that in extracts from lactate-grown cells, about tenfold greater than that in extracts from succinate-grown cells and slightly greater than half the activity in extracts from acetate-grown cells. 4. With arsenite as an inhibitor conditions were found in which the organism would catalyse the quantitative oxidation of propionate to pyruvate. When propionate was completely utilized pyruvate was metabolized further to 2-oxoglutarate. 5. The oxidation of propionate by cells was incomplete both in a ‘closed system’ with alkali to trap respiratory carbon dioxide and in an ‘open system’ with an atmosphere of oxygen+carbon dioxide (95:5). Acetate accumulated. Under these conditions [2−14C]- and [3−14C]-propionate gave rise to [14C]acetate. The rate of conversion of [2−14C]propionate into 14CO2, although much less than the rate of conversion of [1−14C]propionate into 14CO2, was slightly greater than the rate of conversion of [3−14C]propionate into 14CO2. 6. The oxidation of propionate by cells was complete in an ‘open system’ with an atmosphere of either oxygen or air. Under these conditions very little [1−14C]propionate was converted into 14C-labelled cell material. The conversion of [2−14C]- and [3−14C]-propionate into 14C-labelled cell material occurred at an appreciable rate, the rate for the incorporation of [3−14C]propionate being slightly more rapid. In the absence of a utilizable nitrogen source part of the [14C]propionate was incorporated into some reserve material, which was oxidized when added substrate had been completely utilized. 7. [14C]-Pyruvate produced from [14C]propionate was chemically degraded. The C(1) of propionate was found only in C(1) of pyruvate. At least 86% of C(2) of pyruvate was derived from C(2) of propionate and at least 92% of C(3) of pyruvate from C(3) of propionate. 8. These results are incompatible with the operation of any of the previously described pathways for propionate metabolism except the direct one, perhaps via an activated acrylate.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3