Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1

Author:

MOON Byoung1,DUDDY Noreen1,RAGOLIA Louis2,BEGUM Najma12

Affiliation:

1. The Diabetes Research Laboratory, Winthrop University Hospital, Mineola, NY 11501, U.S.A.

2. School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A.

Abstract

Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1G) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1G in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1G or with PP-1G mutants in which site-1 (S1) Ser48 and site-2 (S2) Ser67 residues were substituted with Ala. Cells expressing wild-type and PP-1G mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60min heat shock at 45°C, followed by analysis of [14C]glucose incorporation into glycogen at 37°C. PP-1G S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1G S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3β (GSK-3β) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3β phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1G S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1G S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3-kinase/Akt-dependent GSK-3β inactivation as well as phosphoinositide 3-kinase-independent PP-1 activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3