Identification and characterization of the conserved nucleoside-binding sites in the Epstein-Barr virus thymidine kinase

Author:

WU Chung-Chun1,CHEN Min-Che1,CHANG Ya-Ru1,HSU Tsuey-Ying1,CHEN Jen-Yang12

Affiliation:

1. Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 100, Taiwan, Republic of China

2. Extramural Research Affairs Department, National Health Research Institutes, Min-Chuan East Road, Taipei 114, Taiwan, Republic of China

Abstract

Thymidine kinase (TK), encoded by EBV (Epstein–Barr virus), is an attractive target for antiviral therapy and provides a novel approach to the treatment of EBV-associated malignancies. Despite the extensive use of nucleoside analogues for the treatment of viral infections and cancer, the structure–function relationship of EBV TK has been addressed rarely. In the absence of any structural information, we sought to identify and elucidate the functional roles of amino acids in the nucleoside-binding site using site-directed mutagenesis. Through alignment with other human herpesviral TK protein sequences, we predicted that certain conserved regions comprise the nucleoside-binding site of EBV TK and, through site-directed mutagenesis, showed significant changes in activity and binding affinity for thymidine of site 3 (-DRH-) and 4 (-VFP-) mutants. For site 3, only mutants D392E (Asp392→Glu) and R393H retain activity, indicating that a negative charge is important for Asp392 and a positive charge is required for Arg393. The increased binding affinities of these two mutants for 3´-deoxy-2´,3´-didehydrothymidine suggest that the two residues are also important for substrate selection. Interestingly, the changed metal-ion usage pattern of D392E reveals that Asp392 plays multiple roles in this region. His394 cannot be compensated by other amino acids, also indicating a crucial role. In site 4, the F402Y mutant retains full activity; however, F402S retains only 60% relative activity. Strikingly, when Phe402 is substituted with serine residue, the original preferred pyrimidine substrates, such as 3´-azido-3´-deoxythymidine, iododeoxyuridine and β-l-5-iododioxolane uracil (l-form substrate), have decreased competitiveness with thymidine, suggesting that Phe402 plays a crucial role in substrate specificity and that the aromatic ring is important for function.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3