Characterization of the role of dendritic cells in prion transfer to primary neurons

Author:

Langevin Christelle1,Gousset Karine1,Costanzo Maddalena1,Richard-Le Goff Odile1,Zurzolo Chiara12

Affiliation:

1. Institut Pasteur, Unité de Trafic Membranaire et Pathogénèse, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France

2. Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi die Napoli “Federico II”, via Pansini 5, 80131 Naples, Italy

Abstract

TSEs (transmissible spongiform encephalopathies) are neurodegenerative diseases caused by pathogenic isoforms (PrPSc) of the host-encoded PrPc (cellular prion protein). After consumption of contaminated food, PrPSc deposits rapidly accumulate in lymphoid tissues before invasion of the CNS (central nervous system). However, the mechanisms of prion spreading from the periphery to the nervous system are still unclear. In the present study, we investigated the role of DCs (dendritic cells) in the spreading of prion infection to neuronal cells. First, we determined that BMDCs (bone-marrow-derived DCs) rapidly uptake PrPSc after exposure to infected brain homogenate. Next, we observed a progressive catabolism of the internalized prion aggregates. Similar experiments performed with BMDCs isolated from KO (knockout) mice or mice overexpressing PrP (tga20) indicate that both PrPSc uptake and catabolism are independent of PrPc expression in these cells. Finally, using co-cultures of prion-loaded BMDCs and cerebellar neurons, we characterized the transfer of the prion protein and the resulting infection of the neuronal cultures. Interestingly, the transfer of PrPSc was triggered by direct cell–cell contact. As a consequence, BMDCs retained the prion protein when cultured alone, and no transfer to the recipient neurons was observed when a filter separated the two cultures or when neurons were exposed to the BMDC-conditioned medium. Additionally, fixed BMDCs also failed to transfer prion infectivity to neurons, suggesting an active transport of prion aggregates, in accordance with a role of TNTs (tunnelling nanotubes) observed in the co-cultures.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3