The copolymeric structure of pig skin dermatan sulphate. Isolation and characterization of l-idurono-sulphate-containing oligosaccharides from copolymeric chains

Author:

Fransson Lars-Åke1,Cöster Lars1,Havsmark Birgitta1,Malmström Anders1,Sjöberg Ingrid1

Affiliation:

1. Department of Physiological Chemistry 2, Chemical Centre, University of Lund, S-220 07 Lund, Sweden

Abstract

Dermatan sulphate was degraded by testicular hyaluronidase and an oversulphated fraction was isolated by ion-exchange chromatography. This preparation, which contained fairly long segments derived from the non-reducing terminal portion of the molecule, was subjected to periodate oxidation under acidic conditions. The oxidized iduronic acid residues were cleaved by reduction-hydrolysis (Smith-degradation) (Fransson & Carlstedt, 1974) or by alkaline elimination. The oligosaccharides so obtained contained both GlcUA (glucuronic acid) and IdUA-SO4 (sulphated iduronic acid) residues. Copolymeric oligosaccharides obtained after alkaline elimination were cleaved by chondroitinase-AC into disaccharide and higher oligosaccharides. Since the corresponding oligosaccharides obtained by Smith-degradation were unaffected by this enzyme, it was concluded that the carbohydrate sequences were GalNAc-(IdUA-GalNAc)n-GlcUA-GalNAc. The iduronic acid-containing sequences were resistant to digestion with chondroitinase-ABC. It was demonstrated that the presence of unsulphated N-acetylgalactosamine residues in these sequences could be responsible for the observed effect. This information was obtained in an indirect way. Chemically desulphated dermatan sulphate was found to be a poor substrate for the chondroitinase-ABC enzyme. Moreover, digestion with chondroitinase-ABC of chondroitinase-AC-degraded dermatan sulphate released periodate-resistant iduronic acid-containing oligosaccharides. It is concluded that copolymeric sequences of the following structure are present in pig skin dermatan sulphate: [Formula: see text] N-acetylgalactosamine moieties surrounding IdUA-SO4 residues are unsulphated to a large extent.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3