Effect of a single oral dose of methanol, ethanol and propan-2-ol on the hepatic microsomal metabolism of foreign compounds in the rat

Author:

Powis G1

Affiliation:

1. Department of Pharmacology, University of Glasgow, Glasgow G12 8QQ, U.K.

Abstract

Methanol and ethanol administered to rats as a single oral dose increased aniline hydroxylation by the hepatic microsomal fraction by a maximum of 169 and 66% respectively, whereas aminopyrine demethylation was inhibited by 51 and 61%. The concentration of microsomal cytochrome P-450, and the activities of NADPH-cytochrome c reductase and NADPH-cytochrome P-450 reductase were unchanged. Propan-2-ol, administered as a single oral dose, increased microsomal aniline hydroxylation by 165% and increased aminopyrine demethylation by 83%. The concentration of cytochrome P-450 was unchanged whereas NADPH-cytochrome c reductase and NADPH-cytochrome P-450 reductase were both increased by 38%. Methanol, ethanol and propan-2-ol administration resulted in a decreased type I spectral change but had no effect on the reverse type I spectral change. Methanol administration decreased the type II spectral change whereas ethanol and propan-2-ol had no effect. Cycloheximide blocked the increases in aniline hydroxylation and aminopyrine demethylation but could not completely prevent the decreases in aminopyrine demethylation. The increases in aniline hydroxylation were due to an increase in V, but Km was unchanged. The ability of acetone to enhance and compound SKF 525A to inhibit microsomal aniline hydroxylation was decreased by the administration of all three alcohols. The decrease in the metabolism of aminopyrine may result from a decrease in the binding to the type I site with a consequent failure of aminopyrine to stimulate the reduction of cytochrome P-450. Methanol administration may lead to an increase in aniline hydroxylation because of a failure of aniline to inhibit cytochrome P-450 reduction.

Publisher

Portland Press Ltd.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3