Evolution of enzyme catalytic power. Characteristics of optimal catalysis evaluated for the simplest plausible kinetic model

Author:

Brocklehurst Keith1

Affiliation:

1. Department of Biochemistry and Chemistry, St. Bartholomew's Hospital Medical College, University of London, Charterhouse Square, London EC1M 6BQ, U.K.

Abstract

1. Evolutionary changes in the structure of an enzyme that provide an increase in its Km value are considered. Provided that Km increases as a result of increases in the forward rate constants of the catalysis relative to the reverse rate constants, the enzyme catalyses the conversion of a fixed concentration of its substrate more rapidly when its structure provides that Km>[S] than when Km<[S]. 2. Catalytic efficiency of enzymes is discussed in terms of the simplest plausible model, the Haldane [(1930) Enzymes, Longmans, London] reversible three-step model: [Formula: see text] The rate equation for the forward reaction of this model (formation of P) may be written in the simple form: [Formula: see text] Keq. is the equilibrium constant (=[P]eq./[S]eq.), and kcat.=V/[E]T, where [E]T is the total enzyme concentration. 3. To assess the effectiveness of an enzyme, it is necessary only to determine the extent to which the constraints of a particular kinetic mechanism permit v2 (v when Km»[S]) to approach vd (the diffusion-limited rate). 4. The value of the optimal rate of catalysis (vopt., the maximal value of v2) is dictated by the equilibrium constant for the reaction, Keq.; v2=vd/a, where [Formula: see text] when k+1 is assumed equal to k−3, and vopt.=vd/amin.. When Keq.≥1, it is necessary that k+2»k−1 for a to take its minimum value, amin.; when Keq.«1, it is necessary only that k+2»Keq.·k−1, i.e. a can equal amin. even if k+2<k−1. When Keq.»1, vopt.=vd; when Keq.=1, vopt.=vd/2, and when Keq.«1, vopt.=Keq.·vd. 5. The analysis, together with predicted effects of evolutionary pressure, suggests that in practice the rates of the fastest enzyme-catalysed freely reversible reactions might be expected to be lower than the value of k+1[E]T[S] by about an order of magnitude, particularly if Keq.<1. 6. The existing literature suggests that, in general, appropriate values of Km have evolved for the provision of high rates of catalysis but that many values of kcat. are not large enough to provide optimal rates of catalysis unless the value of k+1in vivo is lower than its value in free solution.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3