Effects of Nitric Oxide Inhibition on the Renal Papillary Blood Flow Response to Saline-Induced Volume Expansion in the Rat

Author:

Atucha Noemí M.1,Ramírez Ana1,Quesada Tomás1,García-Estañ Joaquán1

Affiliation:

1. Departamento de Fisiología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain

Abstract

1. Evidence indicates that nitric oxide (NO) exerts a paracrine influence in the renal medulla. Increases in papillary blood flow are thought to be an important determinant of the renal response to extracellular volume expansion. Therefore, in the present study, we have evaluated the role of NO in mediating papillary blood flow (laser-Doppler flowmetry) and excretory responses to volume expansion with isotonic saline (3% body weight, 15 min). 2. Infusion of the NO synthesis inhibitor Nω-nitro-l-arginine methyl ester (10 μg min−1 kg−1), significantly attentuated the renal diuretic and natriuretic responses to volume expansion as well as the renal hydrostatic interstitial pressure increase induced by this manoeuvre. The percentages of the water and sodium excreted in 1 h by the Nω-nitro-l-arginine methyl ester-pretreated animals were 36% and 40% of the load, whereas those of the control animals were 44% and 65%, respectively. 3. In similar experiments performed in the exposed papilla of Munich Wistar rats, the same dose of Nω-nitro-l-arginine methyl ester reduced basal papillary blood flow and blunted the elevation in papillary blood flow induced by volume expansion (6% versus 16% in the control animals). 4. These results indicate that the inhibition of NO synthesis blunts the renal excretory and papillary responses to volume expansion, suggesting that NO modulates these responses through changes in papillary blood flow and renal interstitial hydrostatic pressure.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3