Altered proteoglycan synthesis by micromelial limbs induced by 6-aminonicotinamide. Appearance of abnormal forms of cartilage-characteristic proteoglycan (PG-H)

Author:

Honda A1,Kazuno S1,Mori Y1,Kimata K1,Suzuki S1

Affiliation:

1. Department of Biochemistry, Tokyo College of Pharmacy, Japan.

Abstract

Since administration of 6-aminonicotinamide (10 micrograms) to day-4 chick embryos in ovo was shown to induce micromelial limbs, biosynthesis of cartilage-characteristic proteoglycan-H (PG-H) as an important index of limb chondrogenesis was examined in day-7 normal and micromelial hind limbs by biochemical and immunological methods. (1) Metabolic labelling of the micromelial limbs with [6-3H]glucosamine and either [35S]sulphate or [35S]methionine, followed by analyses of labelled PG-H by glycerol density-gradient centrifugation under dissociative conditions, showed a marked reduction in the PG-H synthesis. (2) PG-H synthesized by the micromelial limbs was much lower than that synthesized by the normal limbs in the biosynthetic ratio of chondroitin sulphate to keratan sulphate and glycoprotein-type oligosaccharide, although no significant difference was observed in the immunological properties of these proteoglycans. (3) The degree of sulphation of chondroitin sulphates of PG-H was lowered in the micromelial limbs as judged by the increase of unsulphated disaccharide (delta Di-OS) released by chrondroitinase ABC digestion, although there were no significant differences between the normal and the micromelial limbs in the average molecular size (Mr = 38,000) of labelled chondroitin sulphates of PG-H. (4) Addition of beta-D-xyloside, an artificial initiator for chondroitin sulphate synthesis, to the micromelial limbs in culture recovered the incorporation of labelled glucosamine into chondroitin sulphate to that comparable with the normal control with beta-D-xyloside, although the incorporation of [35S]sulphate was lower in the micromelia than in the control with beta-D-xyloside. These results suggest that the reduction in the biosynthesis of the PG-H as well as the production of altered forms of PG-H induced by 6-aminonicotinamide during a critical period of limb morphogenesis may be an important factor for the micromelia.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3