The reconstitution of oxidase activity in membranes derived from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli

Author:

Haddock Bruce A.1

Affiliation:

1. Department of Biochemistry, Medical Sciences Institute, University of Dundee, Dundee DD1 4HN, U.K.

Abstract

1. The reconstitution of oxidase activity in cell-free extracts of a mutant of Escherichia coli K12Ymel, that require 5-aminolaevulinic acid for growth on non-fermentable carbon sources, is described. 2. The reconstitution is dependent on haematin or a haem extract from a prototrophic strain of E. coli, and the product of the reaction has been identified as NADH-reducible cytochrome b. 3. The requirement for haematin cannot be replaced by four other porphyrins. Coproporphyrin III does not inhibit the haematin-dependent reconstitution, mesoporphyrin IX and protoporphyrin IX apparently compete with haematin for a binding site on the cytochrome apoprotein(s) and deuteroporphyrin IX binds to cytochrome apoprotein(s) and cannot be subsequently replaced by haematin. 4. The properties of electron-transport particles from cell-free extracts of the mutant strain, grown aerobically in the presence or absence of 5-aminolaevulinic acid, are described. In the absence of 5-aminolaevulinic acid no detectable cytochromes are produced, and oxidase activities are lowered but there is no apparent effect on the activities of the NADH dehydrogenase and d-lactate dehydrogenase. 5. The reconstitution of oxidase activity by electron-transport particles from cells grown in the absence of 5-aminolaevulinic acid requires ATP and haematin, and the product of the reaction was identified as NADH-reducible cytochrome b. 6. It is concluded that the cytochrome apoproteins are synthesized and incorporated into the cytoplasmic membrane of E. coli in the absence of haem synthesis. The subsequent reconstitution of functional cytochrome(s) requires protohaem, but the nature of the side chain on the 2 and 4 positions of the porphyrin appears to be important.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3