Abstract
Optimization of process variables has become very vital in oil extraction processes to obtain maximum oil yield from oilseeds and nuts. This work focussed on the optimization of process oil extraction process from sandbox seed by mechanical expression. Effects of moisture content, roasting temperature, roasting time, expression pressure and expression time on oil yield from sandbox seed was studied using a 5×5 Central Composite Rotatable Design of Response Surface Methodology experimental design. Results obtained were subjected to Analysis of Variance (ANOVA) and SPSS statistical tool at (p = 0.05). Optimum conditions predicted were validated by experiments. All the processing factors were significant at (p = 0.05) for the sandbox oil yield except roasting temperature. The experimental results and predicted values showed low deviation (0.01-0.62). Oil yields obtained from the sandbox seed at varying process conditions varied from 16.38-38.68%. The maximum oil yield of 38.68% was obtained when the sandbox seed was subjected to process conditions of 6% moisture content, 85°C roasting temperature, 15 min roasting time, expression pressure of 20 MPa and 8 min pressing time. Mathematical equations to predict sandbox seed oil yield at varying process conditions were developed with an R2 (0.8908). The optimum extractable oil yield of 38.95% was predicted for sandbox seed at processing conditions of 7.03% moisture content, 97.72°C roasting temperature, 11.32 min roasting time, 15.11 MPa expression pressure and 8.57 min expression time. The study results provide data for designs of process and equipment for oil extraction from sandbox and other oilseeds.
Publisher
Turkish Journal of Agricultural Engineering Research
Reference69 articles.
1. Abidakun OA, Koya OA and Ajayi OO (2012). Effect of expression conditions on the yield of Dika Nut (Irvingia gabonesis) oil under uniaxial compression. In: 2012 International Conference on Clean Technology and Engineering Management (ICCEM 2012), 12th-15th, p. 315-320. Mechanical Engineering,Covenant University, Ota, Nigeria.
2. Adeeko KA and Ajibola OO (1990). Processing factors affecting yield and quality of mechanically expressed groundnut oil. Journal of Agricultural Engineering Research, 45(1): 31-43.
3. Adejumo BA, Alakowe AT and Obi DE (2013). Effect of heat treatment on the characteristics and oil yield of moringa oleifera seeds. The International Journal of Engineering and Science (IJES), 2 (1): 232-239.
4. Adewuyi A, Paul O, Awolade PO and Oderinde RA (2014). Hura crepitans seed oil: an alternative feedstock for biodiesel production. Journal of Fuels, (8): 464590.
5. Adewuyi A, Gopfert A, Wolff T, Rao BVSK and Prasad RBN (2012). Synthesis of azidohydrin from Hura crepitans seed oil: a renewable resource for oleochemical industry and sustainable development. ISRN Organic Chemistry, 2012/ID 873046.