Affiliation:
1. Cairo University, Faculty of Agriculture, Agricultural Engineering Dept.
2. Cairo University
Abstract
Canola cleaning machine was designed depending upon the mechanical and aerodynamic separation theories. The designed machine was tested at three levels of cylindrical sieve angle 4, 7, and 10 degree and three levels of flat sieve speed 0.62, 0.88, and 1.08 m s-1. The evaluation criteria included machine productivity (MP), cleaning efficiency (CE), percentage of seed losses (Psl), specific consumed energy (Ec), and germination percentage (Gp). The results showed that the maximum values of MP and CE were 680.14 kg h-1 and 99.85 % respectively. While the minimum value of Ec was 5.88 kW h ton-1. These values were achieved at cylindrical sieve slope angle 7 degree and flat sieve speed 0.88 m s-1. Under these working conditions, the values of MP, Ec and CE were 680.14 kg h-1, 5.88 kWh ton-1, and 99.85%, respectively. Thus, the designed machine can be used with enough confidence to clean the canola seeds at cylindrical sieve slope angle 7 degree and flat sieve speed 0.88 m s-1.
Publisher
Turkish Journal of Agricultural Engineering Research
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Reference22 articles.
1. Ali MA, Abd El-Rahman E and Nasr GED (2022). Design and assessment of a small-scale machine for cleaning wheat grains. Acta Technologica Agriculturae, 25(1): 13-19.
2. Alsharifi SKA (2018). Affecting on threshing machine types, grain moisture content and cylinder speeds for maize, Cadiz variety. Agricultural Engineering International: CIGR Journal, 20(3): 233-244.
3. Behroozi F (2018). Weighing a magnet as it falls with terminal velocity through an aluminum pipe. The Physics Teacher, 56(7): 474-477.
4. Binelo MO, de Lima RF, Khatchatourian OA and Stránský J (2019). Modelling of the drag force of agricultural seeds applied to the discrete element method. Biosystems Engineering, 178: 168-175.
5. El-Sayed GH, El-Attar MA, Badr SE and Yehia I (2001). Effect of some mechanical-planting systems on canola crop yield. Misr Journal of Agricultural Engineering, 18(4): 163-172.