Author:
Azam Azeem,Ziafat Shumaila,Fahid Ata ul Mustafa,Anjum Farhan,Faseeh Hamza,Bano Rabia,ur Rehman Attiq,Bashir Amina
Abstract
Chitosan-based polysaccharide biomaterials have gained interest as viable options in tissue engineering due to their distinctive properties and wide range of potential applications. Biomaterials play a crucial role in regenerative medicine because they foster an environment conducive to cell growth and tissue repair. The chitin-derived polysaccharide chitosan is superior than synthetic materials in several ways: it has a similar structure to the extracellular matrix, is biocompatible, biodegradable, antimicrobial, and can incorporate bioactive chemicals. In this article, check how chitosan can be used in tissue engineering as a scaffold for different types of tissue, a hydrogel for wound healing, and a carrier for gene therapy, stem cell culture, and drug delivery. Scaffolds made from chitosan have shown tremendous promise in tissue engineering for the neurological system, bone and cartilage transplantation, and skin regeneration. Hydrogels made from chitosan have been shown to be useful in treating wounds and stopping bleeding. Chitosan's medicinal potential in gene therapy, stem cell culture, and targeted medication administration is further enhanced by the addition of bioactive components such as growth factors, genes, or medicines. In addition, using chitosan in tissue engineering can pave the way for future developments in stem cell techniques, nanotechnology, biofabrication, and 3D bioprinting, among other areas of study. These advances may one day lead to individualized and highly effective therapies for tissue repair and regeneration. The use of chitosan in tissue engineering has the potential to advance regenerative medicine and address the growing demand for more effective techniques to heal damaged tissues. Tissue engineers can revolutionize the field of regenerative medicine and enhance patient outcomes by taking use of chitosan's adaptability and bioactivity to create cutting-edge biomaterials and therapeutic techniques.
Publisher
CrossLinks International Publishers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献