Author:
Mkrtichev Oleg,Mingazova Salima
Abstract
One of the effective methods for ensuring seismic resistance of buildings and structures located in seismic-prone areas is the use of an active seismic protection system. The most common at present is an active seismic protection system based on seismic isolation. Seismic isolations in the form of rubber-metal (RMB) and pendulum sliding bearings (PSB) have gained great popularity in our country and abroad. Also known seismic isolation in the form of a sliding belt at the foundation level. Unlike RMB and PSB, the sliding belt is easier to manufacture, install, maintain, however, it is less studied and there are still a lack of sufficient design justifications. In this study, the effectiveness of a seismic isolating sliding belt at the foundation level with PTFE plates was investigated: a methodology for calculating a building with seismic isolating sliding belt at the foundation level using the direct dynamic method was developed; studies were conducted on the influence of the friction coefficient of the friction minimization component on the effectiveness of the anti-seismic sliding belt using the example of a 9-story monolithic reinforced concrete building under one-component seismic excitation. As a result of the calculations, graphs of relative displacements and accelerations, stress intensity, also pictures with displacement isofields, stress intensity and deformations were obtained. The analysis of the obtained results shows that the most effective component for friction minimization is the use of PTFE plates.
Publisher
Publishing House ASV (Izdatelstvo ASV)
Subject
Mechanics of Materials,Building and Construction,Civil and Structural Engineering,Computational Mechanics
Reference26 articles.
1. REFERENCE
2. Eisenberg J.M. Sooruzheniya s vyklyuchayushchimisya svyazyami dlya sejsmicheskih rajonov [Structures with switchable joints for seismic areas]. Mos-cow. Stroizdat, 1976, 232 с.
3. Mkrtychev O.V., Dzhinchvelashvili G.A, Bunov A.A. Study of lead rubber bearings operation with varying height buildings at earthquake. Procedia Engineering, 2014, Vol.91, pp. 48-53.
4. Mkrtychev O.V., Bunov A.A. Nadezhnost' zhelezobetonnyh zdanij s sistemoj sejsmoizolyacii v vide rezinometallicheskih opor pri zemletryasenii [Reliability of rein-forced concrete buildings with seismic iso-lation system in the form of rubber-metal supports during earthquake]. AKB Publish-ing House, Moscow, 2016, 121 с.
5. Mkrtychev O.V., Bunov A.A. A research on performance efficiency of rubber metal support structures // IOP Conf. Series: Ma-terials Science and Engineering 269, 2017, 012067, doi:10.1088/1757-899X/269/1/012067.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献