DETERMINATION OF BOUNDARIES PARAMETERS OF THE COMPUTATIONAL MODEL FOR ASSESSING THE IMPACT ON THE SURROUNDING FACILITIES FROM TUNNELING

Author:

Ter-Martirosyan Armen,Cherkesov Rustam,Isaev Ilya,Rud Viktoriya,Ambrushkevich Mariya

Abstract

As a result of active development of Moscow underground space, as well as due to the increased density of urban development, it is necessary to forecast additional displacements of surrounding buildings from new construction in order to prevent emergency situations. For this reason, one of the important directions is mathematical modeling of the additional displacements of the surrounding building after erection. Establishing the parameters of design boundaries of a geotechnical model is one of the factors that greatly influence the results of the simulation. This study deals with the assignment of the lower boundary of the scheme when estimating the impact from tunneling works in a two-dimensional formulation. A review of international experience in simulating the design scheme depth for various geotechnical problems and its comparison with Russian experience in modeling schemes has been made. The deformation marks located on the ground surface in the zone of influence of the Rublevo-Arkhangelskaya and Troitskaya (Kommunarskaya) lines of the Moscow Metro under construction were selected for the analysis. The authors carried out the selection of the lower boundary of the scheme by changing it in proportion to the outer diameter of the tunnels in dispersed and rocky soils. The obtained data were compared with geodetic monitoring one. Calculations were made for three different soil models such as Mohr-Coulomb, Mohr-Coulomb with increasing deformation modulus of the prism under the excavation and Hardening soil. In addition, calculations were made for two cases of assignment of the overburden coefficient - according to normative documentation and available research on the subject. As a result of this work, more than 600 calculated cases were obtained. Based on these cases, recommendations were developed for adjusting the scheme depth for the considered soil models.

Publisher

Publishing House ASV (Izdatelstvo ASV)

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3