Oscillation and Extinction Scenarios in the New Continuous Model of the Eruptive Phase of Alien Species Invasion

Author:

Perevaryukha Andrey1

Affiliation:

1. Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences

Abstract

The paper considers the issue of modeling the development of those special population processes that include the passage of the eruptive phase of dynamics. Such brief hurricane regimes of change are often associated with the consequences of invasions of undesirable species. Processes in the introduction of a species can often develop through the delayed phase of a rapid increase in its abundance. The completion of the phase depends on many factors. Outbreaks of many species exert such a strong pressure on the environment that achieving a non-zero balance equilibrium is problematic. Such phenomena are interpreted by us as an extreme transition process to an uncertain state of the biotic environment before the beginning of the process. Depending on the counteraction, which is clearly seen in the examples of the dynamics of insect pests, simulated scenarios of similar phenomena can develop in various ways, including destruction of the habitat. The new model based on the equation with a deviating argument describes the variant of developing the repeated flash of catastrophic character. The scenario is implemented when non-harmonic cycle N*(rτ, t) occurs, which can not be orbitally stable under the given conditions, but becomes transitive. The cycle ends with the trivial-zero value. The scenario of the most abrupt form of the eruptive phase that we simulate ends in a computational experiment by the death of the invasive population, but without forming an unbounded trajectory from the oscillations, as was the case with the destruction of the relaxation cycle of the extreme amplitude in the population flash equation in our previous work.

Funder

Russian Foundation for Basic Research

Publisher

Volgograd State University

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STABILITY ANALYSIS IN SIMULATION OF EVOLUTIONARY PROCESSES;Russian Journal of Biological Physics and Chemisrty;2024-05-21

2. Modelling of Spatial Spreading of Invasions in the Discrete Homogeneous Environment;Mathematical Physics and Computer Simulation;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3