A High Gain Antenna with DGS for Sub-6 GHz 5G Communications

Author:

Olawoye T. O.,Kumar P.

Abstract

This paper introduces the design of a high-gain wideband microstrip patch antenna for sub-6 GHz 5G communication. The proposed antenna integrates a novel defected ground structure (DGS) for achieving the wide bandwidth. The ground plane uses a triangular strip inserted into the ground plane to improve the performance of the antenna. It also uses the reflective plate to concentrate the side lobes and minimise the production of the back lobe, thereby boosting the main lobe of the radiated signal and thus increasing the gain of the proposed antenna. The proposed antenna uses the FR-4 epoxy substrate with an inset feed technique in its design. The simulation and optimisation of the proposed antenna were carried out with CST Microwave Studio Suite. The antenna design is compact with a dimension of 28:03  23:455:35mm3 and a maximum gain and directivity of 6.21 dB and 7.56 dB respectively, with a radiation efficiency of about 80%. The proposed antenna operates from 4.921 GHz to 5.784 GHz, which covers the 4.9 GHz-5.8 GHz of the sub-6 GHz 5G communications spectrum. Fabricated and measured result of the antenna confirm simulated results.

Publisher

Advanced Electromagnetics

Subject

Electrical and Electronic Engineering,Radiation,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Performance Analysis of a Miniaturized Circular Arc Slotted Patch Antenna for Ultra-Wideband Applications;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

2. Multiservice Compact Pixelated Stacked Antenna With Different Pixel Shapes for IoT Applications;IEEE Internet of Things Journal;2023-11-15

3. Tree Shaped Nature-Inspired Ultra-Wideband Antenna for Wireless Body Area Networks Applications;Lecture Notes in Electrical Engineering;2023-11-03

4. Conformal Antenna for Aircraft Applications;2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS);2023-11-02

5. High gain compact wearable antenna for IoT applications;Waves in Random and Complex Media;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3