Design of Complementary Hexagonal Metamaterial Based HMSIW Band-Pass Filter and Reconfigurable SIW Filter Using PIN Diodes

Author:

Boubakar H.,Abri M.,Benaissa M.

Abstract

This paper is divided into two sections, in the first section, a new SIW and a half-mode SIW band-pass filters based on complementary hexagonal metamaterial cells (C-HMCs) are proposed. Firstly, the SIW is analyzed in case of using two C-HMC cells and in the case of using four of these cells.  Secondly, the HMSIW tunable BPF is studied and optimized. The size of the half mode is reduced by almost 50%. This filter design has a very high insertion loss about -0.4 dB, and significant transmission bandwidth extending from 5.9 GHz to 6.5 GHz. In the second section of this paper, an electronically reconfigurable SIW band-pass filter is proposed. By implementing two PIN diodes in the gaps of the two C-HMC, the results of turning the diodes ON or OFF individually is a switching in the frequency center, between 5.8 GHz and 6.8 GHz. Also, a dual band with two frequency centers at (5.6 GHz and 7.4 GHz) is achieved by turning both of the diodes ON. In addition, the metamaterial properties of all the proposed filters are investigated and presented in this work.

Publisher

Advanced Electromagnetics

Subject

Electrical and Electronic Engineering,Radiation,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3