Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

Author:

Baccouch C.,Bouchouicha D.,Sakli H.,Aguili T.

Abstract

The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC) generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF) transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11), gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS) software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

Publisher

Advanced Electromagnetics

Subject

Electrical and Electronic Engineering,Radiation,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regional Interferences to Photovoltaic Development: A Polish Perspective;Energies;2024-07-15

2. Research Concerning Electromagnetic Emissions from Residential On-grid PV Systems;Journal of Telecommunictions and Information Technology;2021-12-30

3. Adaptive Ku-Band Solar Rectenna for Internet-of-Things- (IoT)-over-Satellite Applications;Wireless Communications and Mobile Computing;2021-07-15

4. Optical Rectenna for 2.4 GHz Wireless Communications;2021 International Wireless Communications and Mobile Computing (IWCMC);2021-06-28

5. Optical RECTENNA for Energy Harvesting and RF Transmission in Connected Vehicles;2020 17th International Multi-Conference on Systems, Signals & Devices (SSD);2020-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3