A Compact Multi-Band Monopole Antenna using Metamaterial for WLAN/WiMAX Applications

Author:

Mouhouche F.,Azrar A.,Dehmas M.,Djafri K.

Abstract

In this paper, a tri-band printed monopole antenna with electrically coupled metamaterial units is proposed and investigated. The proposed antenna is designed to cover WLAN/WiMAX applications. The antenna consists of a printed strip line and two double metamaterial unit cells of different size placed near the monopole antenna on opposite sides. Each unit cell exhibits a negative permeability over the resonance frequency at 2.5 GHz and 3.62 GHz, which produces magnetic couplings with the monopole antenna. The proposed antenna structure was fabricated and measured. The measured -10 dB bandwidth for the return loss is from 2.47GHz-2.51GHz, 3.59GHz-3.69GHz, and 5.3GHz - 7.2 GHz, which are suitable for (WLAN: 2.4–2.484,  5.15–5.35,  and  5.725–5.85  GHz) and  (WiMAX: 2.5–2.69, 3.4–3.8, and 5.25–5.85 GHz) band Applications. By using the switches across the gap of proposed-MTM unit cell, the effect of this unit deactivated and its resonance frequency will disappear. Hence, the proposed antenna maintains the omnidirectional radiation pattern.

Publisher

Advanced Electromagnetics

Subject

Electrical and Electronic Engineering,Radiation,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Resonance Characteristics of the Six-Tooth-Shaped Monopole Microstrip Antenna;2023 Radiation and Scattering of Electromagnetic Waves (RSEMW);2023-06-26

2. Dual Band Cup-shaped Microstrip Monopole Antenna for WLAN/WiMAX Application;2022 2nd International Conference on Advanced Electrical Engineering (ICAEE);2022-10-29

3. A Two-Element Slotted Cup-shaped Compact Monopole Antenna For MIMO Applications;2022 2nd International Conference on Advanced Electrical Engineering (ICAEE);2022-10-29

4. A compact double-inverted Ω-shaped dual-band patch antenna for WLAN/WiMAX applications;Frequenz;2022-03-01

5. A Multiband Antenna Stacked with Novel Metamaterial SCSRR and CSSRR for WiMAX/WLAN Applications;Micromachines;2021-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3