On optimizing the deployment of an internet of things sensor network for soil and crop monitoring on arable plots

Author:

Savin I. Yu.1ORCID,Blokhin Yu. I.2

Affiliation:

1. Federal Research Centre “V.V. Dokuchaev Soil Science Institute”

2. Agrophysical Research Institute

Abstract

One of the main stream of digitalization in agriculture is the introduction of Internet of Things technologies, which is expressed in the creation and use of specialized sensors that are placed in the fields. The placement of such sensors within agricultural plot should make it possible to characterize all the microvariability of soil fertility parameters in the field. That is, their number and spatial location should be optimal, on the one hand, in terms of costs of their acquisition and operation, and, on the other hand, in terms of accuracy of interpolation of data obtained with their help to the entire plot. It has been shown that the use of crop condition maps obtained on the basis of satellite data and the separation based on them of management zones can lead to significant errors in the interpolation of monitoring results, obtained in separate points, on the whole plot. An approach for optimization of sensor placement is proposed based on the use of soil fertility mapping, which is the result of refinement, updating and clarification of traditionally drawn soil maps on the basis of high spatial resolution remote sensing data. The possibilities of using the approach are demonstrated by the example of a test plot in Leningrad region of Russia. 

Publisher

V.V. Dokuchaev Soil Science Institute

Subject

General Medicine

Reference38 articles.

1. Vedomstvennyj proekt “Cifrovoe sel'skoe hozyajstvo”: oficial'noe izdanie (Departmental project “Digital Agriculture”: official publication), Moscow: FGBNU “Rosinformagrotekh”, 2019, 48 p.

2. Zhelezova S.V., Nauchno-metodicheskoe obosnovanie tekhnologij tochnogo i resursosberegayushchego zemledeliya dlya zernovyh kul'tur v Nechernozemnoj zone RF: Diss. … dokt. s.-kh. nauk (Scientific and methodological substantiation of precision and resource-saving farming technologies for grain crops in the Non-Chernozem zone of the Russian Federation: Dr. agric. sci. thesis), Moscow: RGAU-MSKHA im. K.A. Timiryazeva, 2020. 415 p.

3. Ivanov A.L., Kozubenko I.S., Savin I.Yu., Kiryushin V.I., Cifrovoe zemledelie (Digital agriculture), Vestnik rossijskoj sel'skohozyajstvennoj nauki, 2018, No. 5, pp. 4–9.

4. Savin I.Yu., The Classification of Soils and Agriculture, Dokuchaev Soil Bulletin, 2016, Vol. 84, pp. 3–9, DOI: 10.19047/0136-1694-2016-84-3-9.

5. Savin I. Yu., Savenkova E.V., Kucher D.E., Tutukova D.A., Berbekov S.A., Ocenka kontrastnosti pochvennogo pokrova pahotnyh ugodij po sputnikovym dannym Sentinel-2 (Estimation of soil cover contrast in arable lands using Sentinel-2 satellite data), Pochvovedenie, 2021, No. 11, pp. 1295–1305.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3