1. [Bao 20] Bao, S., He, H., Wang, F., Wu, H., and Wang, H.: PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 85–96 (2020)
2. [Borgeaud 22] Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Van Den Driessche, G. B., Lespiau, J.B., Damoc, B., Clark, A., and al., et : Improving Language Models by Retrieving from Trillions of Tokens, in Proceedings of the 39th International Conference on Machine Learning, pp. 2206–2240 (2022)
3. [Clark 89] Clark, H. H. and Schaefer, E. F.: Contributing to discourse, Cognitive Science, Vol. 13, No. 2, pp. 259–294 (1989)
4. [Devlin 19] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)
5. [Eric 21] Eric, M., Chartier, N., Hedayatnia, B., Gopalakrishnan, K., Rajan, P., Liu, Y., and Hakkani-Tur, D.: Multi-Sentence Knowledge Selection in Open-Domain Dialogue, in Proceedings of the 14th International Conference on Natural Language Generation, pp. 76–86 (2021)