LAGRANGIAN FORMALISM IN PROBLEMS OF SMALL OSCILLATIONS OF VORTEX FLOWS AND ITS CONNECTION WITH THE VARIATIONAL PRINCIPLE FOR IDEAL INCOMPRESSIBLE HYDRODYNAMICS OF VORTEX LINES

Author:

Kopiev V.F.1,Chernyshev S.A.1

Affiliation:

1. Central Aerohydrodynamic Institute (TsAGI)

Abstract

The paper discusses the description of vortex flows of an ideal incompressible fluid based on the formalism of Lagrangian mechanics. Using the displacement field of liquid particles as a generalized coordinate, we write out the Lagrangian describing the dynamics of small perturbations (Kopiev, Chernyshev, 2018). The corresponding Lagrange equations are the equation for the displacement field (Drazim, Reid, 1981): This equation is equivalent to the Helmholtz equation for vorticity perturbations. The displacement field is defined as the difference in the positions of liquid particles on trajectories in disturbed and undisturbed flows. Although this definition is given in terms of Lagrangian variables associated with liquid particles, the displacement field itself is an Euler variable, expressed through velocity and vorticity perturbations. An example of using Lagrangian to solve the problem of conservation of the quadrupole moment of a vortex flow is considered. Using the Noether theorem, conditions on a stationary flow are obtained, under which the quadrupole moment of small perturbations of this flow is an integral of motion (Kopiev, Chernyshev, 2018). It is shown that these conditions are satisfied for the jet flows uniform along the longitudinal coordinate. The result obtained is important in aeroacoustics due to the fact that the quadrupole moment of the vortex flow represents the main term of the decomposition of a compact acoustic source in Machnumber (Lighthill, 1952; Crow, 1970; Kopiev, Chernyshev, 1995). The generalization of these results to the nonlinear case is considered. The Lagrangian is obtained for an arbitrary nonlinear displacement field: nowhere Gis Green’s function of the Laplace equation. The corresponding Lagrange equations coincide with the differential equations describing the nonlinear dynamics of the displacement field (Drazin, Reid, 1981). Expansion of the Lagrangian in small perturbations to quadratic terms gives the Lagrangian of the linear system. The question of the relationship of the proposed approach to the description of the dynamics of an incompressible fluid and known approaches based on the formalism of Lagrangian mechanics with the coordinates of liquid particles as generalized coordinates (Chapman, 1978; Goncharov, Pavlov, 2008; Kuznetsov, Ruban, 1998) is considered. It is shown that the transformation of the Lagrangian obtained in (Kuznetsov, Ruban, 1998) to the Lagrangian can be carried out by transforming Lagrangian variables (coordinates of liquid particles) to Eulerian variables (displacement field). This study was supported by the Russian Science Foundation, project No. 17-11-01271.

Funder

Russian Science Foundation

Publisher

P.P. Shirshov Institute of Oceanology, RAS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3