Pengenalan Pola Emosi Manusia Berdasarkan Ucapan Menggunakan Ekstraksi Fitur Mel-Frequency Cepstral Coefficients (MFCC)

Author:

Helmiyah Siti,Fadlil Abdul,Yudhana Anton

Abstract

Human emotion recognition subject becomes important due to it's usability in daily lifestyle which requires human and computer interraction. Human emotion recognition is a complex problem due to the difference within custom tradition and specific dialect which exists on different ethnic, region and community. This problem also exacerbated due to objectivity assessment for the emotion is difficult since emotion happens unconsciously. This research conducts an experiment to discover pattern of emotion based on feature extracted from speech. Method used for feature extraction on this experiment is Mel-Frequency Cepstral Coefficient (MFCC) which is a method that similar to the human hearing system. Dataset used on this experiment is Berlin Database of Emotional Speech (Emo-DB). Emotions that are used for this experiments are happiness, boredom, neutral, sad and anger.  For each of these emotion, 3 samples from Emo-DB are taken as experimental subject. The emotion patterns are successfully visible using specific values for MFCC parameters such as 25 for frame duration, 10 for frame shift, 0.97 for preemphasis coefficient, 20 for filterbank channel and 12 for ceptral coefficients. MFCC features are then extracted and calculated to find mean values from these parameters. These mean values are then plotted based on timeframe graph to be investigated to find the specific pattern which appears from each emotion. Keywords— Emotion, Speech, Mel-Frequency Cepstral Coefficients (MFCC).

Publisher

Universitas Klabat

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sistem pengenal emosi berbasis suara menggunakan ekstraksi ciri Fast Fourier Transform;Vortex;2024-03-01

2. Recognition of Score Word in Freestyle Kayaking;2022 IEEE 12th International Conference on Electronics Information and Emergency Communication (ICEIEC);2022-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3