Deep Learning-based Land-cover Change Detection in Remote-sensing Imagery

Author:

Andrushia A. Diana,

Abstract

With the significant advancement in deep-learning methods and their feature representation, deep-learning methods are more prevalent in solving change-detection tasks. The prime purpose of change detection is to detect the changes on the surface of the earth. In this work, an end-to-end encoder-decoder architecture is used to detect the changes in the land cover. The proposed method uses residual U-Net to find land-cover image changes. The UNet structure is used as the backbone of the network. The effectiveness of the proposed method has been experimented through LEVIR-CD datasets. The results showed that the proposed method outperforms the state-of-the-art techniques and gives reliable results. These techniques can be used to examine changes in the earth's crest due to natural events, such as landslides, earthquakes, erosion and geo-hazards or human activity, like mining and development. KEYWORDS: Change detection, Remote sensing, Residual UNet, Deep learning, Land cover, Climate.

Publisher

Jordan University of Science and Technology

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3