Damage Mechanism on Different Joint Types of Plain Concrete under Uniaxial Compression

Author:

Guo Shanshan,Cui Deyong,Lv Liang

Abstract

Excavation of tunnels or chambers causes crack initiation, propagation and coalescence, resulting in the instability and destruction of underground projects. Understanding the damage mechanism of joint rock-like materials is important for maintaining the stability of concrete construction. Based on the Mohr–Coulomb criterion and Lemaitre strain equivalence hypothesis, the coupling-damage constitutive model of rock masses was improved for application to plain concrete. Parameters including the mesoscopic and macro-meso coupling damage variables, as well as the fractal dimension, were calculated to realize the non-linear mechanical behaviour during damage evolution. The rationality of the model was verified by comparing experimental and theoretical parameters. Results revealed that the coupled-damage constitutive model of rock masses has a good applicability to plain concrete. Furthermore, two main factors affected the damage deformation: the number of joints and the inclination angle. As the number of joints increased, the early damage accumulation increased and the inflection point of the damage rate occurred in advance. The damage deformation varied significantly when the inclination angle was changed. The cumulative damage curve of the plain-concrete specimens is shown as the evolution law of an S-type curve. Both peak strength and elastic modulus were positively correlated with the damage variable. Moreover, a smaller peak strength resulted in a larger fractal dimension and coupling-damage variable. KEYWORDS: Rock mass, Joint inclination angle, Mesoscopic, Macroscopic, Fractal dimension, Coupling-damage constitutive model.

Publisher

Jordan University of Science and Technology

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3