Characteristics of Pre-peak Mechanical Damage and Energy Evolution of Typical Hard-rock in Diversion Tunnel under Cyclic Loading-Unloading

Author:

,Yang Rongzhou

Abstract

An in-depth understanding of the pre-peak mechanical damage and energy-evolution characteristics of typical hard-rock in a diversion tunnel under cyclic load is of great significance to promote the safe and efficient construction of the diversion tunnel and the stability of surrounding rock. To study the pre-peak mechanical characteristics and the competition mechanism between energy storage and energy dissipation of typical hard-rock in a diversion tunnel under cyclic loading-unloading, combined with the internal drilling and blasting excavation of the actual engineering rock mass and the external vehicle cyclic load environment of the diversion tunnel, the cyclic loadingunloading tests of typical granite and tuff in diversion tunnel were carried out. Based on the analysis principle of mechanics and energy, the strain variables, modulus variables, energy variables and damage variables of granite and tuff under cyclic loading-unloading test were defined. The cyclic mechanical properties and energyevolution characteristics of granite and tuff under pre-peak load were analyzed. The competition mechanism between pre-peak energy storage and pre-peak energy dissipation of granite and tuff and the evolution law of strain damage variable and energy damage variable were revealed. The selection principle of rock sample size and the limitation of the test scheme were further discussed. The study of the damage evolution of rocks close to failure (pre-peak stage) under cyclic load is helpful to better understand the damage and failure mechanism of rocks in practical engineering problems. Keywords: Diversion tunnel, Cyclic loading-unloading, Granite/Tuff, Blasting cyclic load, Energy evolution.

Publisher

Jordan University of Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3