Physics of Potassium Ion Channel Inactivation in Neurons

Author:

Collins Ryan

Abstract

The electrical signaling capabilities of neurons depend on the flows of ions into and out of their axons. Potassium ions exit an axon’s interior through a potassium channel or pore that connects the intracellular region with the extracellular region. The channel opens, or is activated, allowing potassium ions to exit. The channel then undergoes a blocking transition in which the channel is physically open but is blocked by some part of the larger channel molecule. This blocking process is called inactivation, and the physics by which it might occur forms the topic of our investigation. The N-terminus region of the Drosophila shaker potassium ion channel was identified by Hoshi et al as having an important role in channel inactivation. Using the last 19 amino acids in the N-terminus region, a mass and net charge were calculated. We investigated two forces that might affect the motion of this N-terminus mass (tentatively identified as the blocking or inactivation particle): the magnetic field effects due to potassium ion current in the channel, and an electric force due to the decreasing density of potassium ions from the intracellular region. Time-of-flight calculations were calculated for the inactivation particle. These times will be discussed in terms of typical inactivation processes.

Publisher

American Journal of Undergraduate Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3