A Benchmark Study on Steepest Descent and Conjugate Gradient Methods-Line Search Conditions Combinations in Unconstrained Optimization

Author:

Kiran Kadir1

Affiliation:

1. Department of Airframe and Powerplant Maintenance

Abstract

In this paper, it is aimed to computationally conduct a performance benchmarking for the steepest descent and the three well-known conjugate gradient methods (i.e., Fletcher-Reeves, Polak-Ribiere and Hestenes-Stiefel) along with six different step length calculation techniques/conditions, namely Backtracking, Armijo-Backtracking, Goldstein, weakWolfe, strongWolfe, Exact local minimizer in the unconstrained optimization. To this end, a series of computational experiments on a test function set is completed using the combinations of those optimization methods and line search conditions. During these experiments, the number of function evaluations for every iteration are monitored and recorded for all the optimization method-line search condition combinations. The total number of function evaluations are then set a performance measure when the combination in question converges to the functions minimums within the given convergence tolerance. Through those data, the performance and data profiles are created for all the optimization method-line search condition combinations with the purpose of a reliable and an efficient benchmarking. It has been determined that, for this test function set, the steepest descent-Goldstein combination is the fastest one whereas the steepest descent-exact local minimizer is the most robust one with a high convergence accuracy. By making a trade-off between convergence speed and robustness, it has been identified that the steepest descent-weak Wolfe combination is the optimal choice for this test function set.

Publisher

Croatian Operational Research Society

Subject

Applied Mathematics,Management Science and Operations Research,Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3