Comparison of convolutional neural network architectures for robustness against common artefacts in dermatoscopic images

Author:

Katsch Florian,Rinner Christoph,Tschandl Philipp

Abstract

Introduction: Automated classification of dermatoscopic images via neural networks shows comparable performance to clinicians in experimental conditions, but can be affected by artefacts like skin markings or rulers. It is unknown whether specialized neural networks are equally affected, or more robust to artefacts. Objectives: Analyse robustness of three neural network architectures, namely ResNet34, Faster R-CNN and Mask R-CNN. Methods: We identified common artefacts in the public HAM10000, PH2 and the 7-point criteria evaluation datasets, and established a template-based method to superimpose artefacts on dermatoscopic images. The HAM10000-dataset with and without superimposed artefacts was used to train the networks, followed by analysing their robustness against artefacts in test images. Results: ResNet-34 and Faster R-CNN models trained on regular images perform worse than the Mask R-CNN models when tested on images with superimposed artefacts. Artefacts in all tested images led to a decrease in area under the precision-recall curve values of 0.030 for ResNet-34 and 0.045 for Faster R-CNN in comparison to only 0.011 for Mask R-CNN. However, changes in model’s performance only became significant with 40% or more of the images having superimposed artefacts. We could also show that loss in performance occurs when the training was biased by selectively superimposing artefacts on images belonging to a certain class. Conclusions: Instance segmentation architectures may be helpful to counter the effects of artefacts, and further research on related architectures of this family should be promoted. Our introduced template-based artefact insertion mechanism could be useful for future research.

Publisher

Mattioli1885

Subject

Dermatology,Genetics,Oncology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3